DIFFERENZIALGLEICHUNGEN: Kurztheorie

1. Grundlagen

Eine Differenzialgleichung (DGL) enthält nebst unabhängigen Variablen (z.B. x) auch abhängige Variablen (z.B. y hängt von x ab) und Ableitungen von y (z.B. y', y'', etc.).

Beispiele:

- 1. y' = x + y (DGL 1. Ordnung enthält 1. Ableitungen, aber nicht höhere) allgemein: $y' = g_1(x, y)$
- 2. y'' = y (DGL 2. Ordnung enthält 2. Ableitungen, aber nicht höhere) allgemein: $y'' = g_2(x, y, y')$

Eine DGL (exakt) lösen, heisst: Eine Funktion f mit der Funktionsgleichung y = f(x) finden, welche die DGL erfüllt, d.h. durch Einsetzen von f(x) und der Ableitungen wird die DGL für jedes x erfüllt. Die Menge aller Lösungen für f(x) heisst auch allgemeine Lösung.

Beispiel:

3. $y' = \frac{1}{2}x$ wird erfüllt durch $f(x) = \frac{1}{4}x^2 + C$, wobei C eine Konstante ist. Durch die Gleichung $y = \frac{1}{4}x^2 + C$ wird eine Kurvenschar beschrieben.

Soll eine Lösung bestimmt werden, welche eine Anfangsbedingung $y_0 = f(x_0)$ erfüllt, spricht man von einer speziellen Lösung, bzw. von einer Scharkurve. Zu diesem Zweck muss die Konstante C bestimmt werden.

2. Einige Beispiele von Anwendungen

- Exponentielles Wachstum: $y' = k \cdot y$
- Logistisches Wachstum: $y' = k \cdot \left(1 \frac{y}{S}\right) \cdot y$
- Ausbreitung einer ansteckenden Krankheit (S-I-R-Modell): $S' = -a \cdot S \cdot I$ (System mit 3 DGL) $I' = a \cdot S \cdot I b \cdot I$ $R' = b \cdot I$
- \bullet Freier Fall ohne Luftwiderstand: v'=g
- Freier Fall mit Luftwiderstand: $v' = g + k \cdot v$
- Abkühlungsgesetz (Newton): $T' = k \cdot (T T_0)$
- Ausflussgesetz (Torricelli): $y' = -k\sqrt{y}$

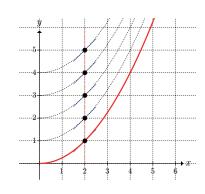
3. Näherungsverfahren zur Lösung

3.1 Richtungsfeld einer DGL

Um eine ungefähre Vorstellung der Lösungen einer DGL von der Form y'=g(x,y) zu bekommen, kann man für jedes Paar (x,y) die Tangentensteigung m=y'=g(x,y) einer Lösungskurve berechnen und ein sog. Richtungsfeld zeichnen. Eine Lösungskurve "passt" dann in das Richtungsfeld.

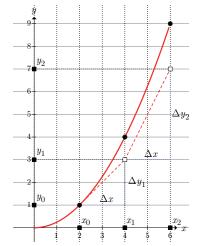
Hilfreich sind dabei oft auch Linien gleicher Steigung (Isoklinen).

Beispiel: $y' = \frac{1}{2}x$ mit Isokline x = 2 und y(0) = 0.



3.2 Das Euler-Verfahren

Um eine spezielle Näherungslösung einer DGL von der Form y' = g(x, y) durch (x_0, y_0) zu bekommen, ersetzt man den Differenzenquotienten $\frac{\Delta y}{\Delta x}$ näherungsweise durch die Ableitung y' = g(x, y), welche aus der DGL bekannt ist.



Ausgehend vom Wertepaar (x_0, y_0) wird eine Folge von Wertepaaren (x_i, y_i) auf folgende Art bestimmt:

$$\begin{split} g(x_i,y_i) &= \frac{\Delta y_{i+1}}{\Delta x} = \frac{y_{i+1} - y_i}{\Delta x}, \text{ womit die Rekursion} \\ x_{i+1} &= x_i + \Delta x, \ y_{i+1} = y_i + \Delta y_{i+1} = y_i + g(x_i,y_i) \cdot \Delta x \text{ bestimmt ist.} \end{split}$$

Beispiel: $y' = \frac{1}{2}x$ durch (2,1) mit $g(x,y) = \frac{1}{2}x$ und $\Delta x = 2$

4. Exakte Lösungsverfahren

4.1 Separierbare DGL

Kann man eine DGL auf die Form $y' = \frac{g(x)}{h(y)}$ bringen, heisst sie separierbar.

Mit Differenzialen kann man schreiben: $\frac{dy}{dx} = \frac{g(x)}{h(y)}$

Separieren der Variablen: h(y) dy = g(x) dx

Beide Seiten integrieren: $\int h(y) \, dy = \int g(x) \, dx$

Stammfunktionen angeben: H(y) = G(x) + C (mit Integrationskonstante C)

Nach y auflösen: y = f(x) (enthält Konstante C)

4.2 Lineare DGL 1. Ordnung

a) Homogene Gleichungen $y' = g(x) \cdot y$

Die DGL $y' = g(x) \cdot y$ ist ein Sonderfall einer sep. DGL und heisst auch homogene lineare DGL 1. Ordnung.

Ihre allgemeine Lösung kann durch das obige Verfahren ermittelt werden und lautet: $y = c \cdot e^{G(x)}$, wobei c eine Konstante und G eine Stammfunktion von g ist.

b) Inhomogene Gleichungen $y' = g(x) \cdot y + h(x)$

Die DGL $y' = g(x) \cdot y + h(x)$ heisst inhomogene lineare DGL 1. Ordnung mit dem inhomogenen Term h(x). Inhomogene DGL sind leider nicht separierbar!

Der Ansatz $y = c \cdot e^{G(x)}$ führt nur zum Ziel, wenn c als Funktion von x geschrieben wird (*Variation der Konstanten c*), also $y = c(x) \cdot e^{G(x)}$.

Mit diesem Ansatz erhält man die allgemeine Lösung: $f(x) = (\int h(x) \cdot e^{-G(x)} dx) \cdot e^{G(x)}$

Beispiel:

4. y' = y + x ist eine inhomogene lineare DGL mit g(x) = 1 und h(x) = x.

Ihre allgemeine Lösung lautet: $f(x) = C \cdot e^x - x - 1$.

Die spezielle Lösung durch (x,y)=(0,1) ergibt C=2 und damit $f(x)=2\cdot e^x-x-1$.

5. Lineare DGL 2. Ordnung

Allgemeiner Fall einer linearen inhomogenen DGL 2. Ordnung: y'' + a(x)y' + b(x)y = c(x)

Eine bestimmte Lösung dieser Differenzialgleichung nennen wir eine partikuläre Lösung.

Wesentliche Sonderfälle

• homogene DGL:

$$y'' + a(x)y' + b(x)y = 0$$

ullet Inhomogene DGL mit konstanten Koeffizienten a und b:

$$y'' + ay' + by = c(x)$$

 \bullet Inhomogene DGL mit konstanten Koeffizienten $a,\,b$ und c:

$$y'' + ay' + by = c$$

 \bullet Homogene DGL mit konstanten Koeffizienten a und b:

$$y'' + ay' + by = 0$$

Grundlegende Sätze

- 1. Die allgemeine Lösung einer linearen inhomogenen DGL 2. Ordnung ist gleich der Summe aus der allgemeinen Lösung der zugehörigen homogenen DGL und einer beliebigen partikulären Lösung der inhomogenen DGL.
- 2. Zwei partikuläre Lösungen $y_1(x)$ und $y_2(x)$ sind genau dann voneinander unabhängige (Basis-)Lösungen einer homogenen DGL, wenn die Bedingung $y_1'(x) \cdot y_2(x) y_2'(x) \cdot y_1(x) \neq 0$ erfüllt ist.
- 3. Sind y_1 und y_2 Basislösungen der homogenen DGL, so lautet die allgemeine Lösung der homogenen DGL $y(x) = C_1y_1(x) + C_2y_2(x)$
- a) Lösen einer homogenen Gleichung vom Typ y'' + ay' + by = 0

Der Ansatz $y(x) = e^{rx}$ ist sicher geeignet und liefert durch Einsetzen in die DGL die sogenannte *charakteristische* Gleichung $r^2 + ar + b = 0$, so dass wir eine quadratische Gleichung für r bekommen.

Welches sind in diesen Fällen die Basislösungen?

1. Fall: Die Gleichung hat zwei reelle Lösungen r_1 und r_2 :

$$y_1(x) = e^{r_1 x} \text{ und } y_2(x) = e^{r_2 x}$$

2. Fall: Die Gleichung hat eine reelle (Doppel-) Lösung r:

$$y_1(x) = e^{rx} \text{ und } y_2(x) = x \cdot e^{rx}$$

3. Fall: Die Gleichung hat konj. kompl. Lösungen r_1 und r_2 : $r_1 = u + \mathrm{i} v$ und $r_2 = u - \mathrm{i} v$

$$y_1(x) = e^{ux} \sin(vx)$$
 und $y_2(x) = e^{ux} \cos(vx)$

b) Lösen einer inhomogenen Gleichung vom Typ y'' + ay' + by = c(x)

Falls man eine partikuläre Lösung p(x) dieser DGL gefunden hat, ist $y(x) = p(x) + C_1y_1(x) + C_2y_2(x)$ die allgemeine Lösung.

p(x) kann im Prinzip durch Variation der Konstanten $C_1 = C_1(x)$ und $C_2 = C_2(x)$ gefunden werden, aber oft hilft ein geeigneter Ansatz, den man z.B. aus einer Tabelle bezieht.

Beispiel: y'' + 2y' - 3y = 4x Homogene L.: $y(x) = C_1 e^{-3x} + C_2 e^x$, Ansatz: p(x) = Ax + B

$$p''(x) + 2p'(x) - 3p(x) = 4x \Rightarrow 2(A) - 3(Ax + B) = 4x \Rightarrow 2A - 3B = 0, -3Ax = 4x \Rightarrow A = -\frac{4}{3}, B = -\frac{8}{9}$$

$$\Rightarrow y(x) = C_1 e^{-3x} + C_2 e^x - \frac{4}{3}x - \frac{8}{9}$$